Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.901
Filtrar
1.
J Oral Microbiol ; 16(1): 2334578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562512

RESUMO

Objectives: This study aims to clarify the effect of ferroptosis by P. gingivalis on periodontal epithelium impairment and potential mechanisms. Materials and methods: The expression of epithelial junction proteins (CDH1, OCLN, ZO-1), FTL and GPX4 in healthy and periodontitis tissues was analyzed using bioinformatics analysis and validated in vivo. An in vitro model was constructed to evaluate ferroptosis by mitochondria morphology, content of iron and GSH, and level of lipid peroxidation, FTL, GPX4 and SLC7A11. The iron concentration was changed with iron chelator DFO and iron supplementation FAC. The epithelial impairment was assessed by protein expression. To investigate the mechanism, si-MYB (a negative transcription factor of SLC7A11) and GPX4 inhibitor RSL3 were employed. Results: CDH1, OCLN, ZO-1 and GPX4 expression was decreased, while FTL expression was elevated in periodontitis tissues. Infected cells showed ferroptosis change of the mitochondria with higher level of lipid peroxidation, iron, FTL and lower level of GPX4, GSH, SLC7A11. FAC augmented ferroptosis and weakened epithelial junction, while DFO exhibited a counteractive effect. Silencing MYB rescued SLC7A11, GPX4 and epithelial junction proteins, which was hindered by RSL3. Conclusions: Our study demonstrated that P. gingivalis weakened the oral epithelial barrier by causing ferroptosis via inhibiting SLC7A11/GSH/GPX4 axis.

2.
J Investig Med ; : 10815589241246541, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557364

RESUMO

Ferroptosis is a recently identified and evolutionarily conserved form of programmed cell death. This process is initiated by an imbalance in iron metabolism, leading to an overload of ferrous ions. These ions promote lipid peroxidation in the cell membrane through the Fenton reaction. As the cell's antioxidant defenses become overwhelmed, a fatal build-up of reactive oxygen species (ROS) occurs, resulting in the rupture of the plasma membrane. Ferroptosis is implicated in conditions such as ischemia-reperfusion injuries and a range of cancers. In our research, we explored ferroptosis in myelodysplastic syndromes (MDS) by measuring iron levels, transferrin receptor expression, and glutathione peroxidase 4 (GPX4) mRNA. Our findings revealed that MDS patients had significantly higher Fe2+ levels in CD33+ cells and increased transferrin receptor mRNA compared to healthy individuals. GPX4 expression was also higher in MDS, but not statistically significant. To investigate potential treatments for myeloid hematological diseases through ferroptosis induction, we treated the myelodysplastic syndrome cell line (SKM-1) and two myeloid leukemia cell lines (KG-1 and K562) with erastin, an iron transfer inducer. We observed that erastin treatment led to glutathione depletion, reduced GPX4 activity, and increased ROS, culminating in cell death by ferroptosis. Furthermore, combining erastin with azacitidine demonstrated a synergistic effect on MDS and leukemia cell lines, suggesting a promising approach for treating these hematological conditions with this drug combination. Our experiments confirm erastin's ability to induce ferroptosis in MDS and highlight its potential synergistic use with azacitidine for treatment.

3.
Liver Int ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597373

RESUMO

BACKGROUND AND AIMS: Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS: ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS: Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION: Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.

4.
J Nepal Health Res Counc ; 21(4): 550-556, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38616582

RESUMO

BACKGROUND: Sickle cell anemia is the most common hemoglobinopathy in the world. The study aimed to evaluate the iron profile and its association with socio-demographic characteristics in patients with sickle cell disease. METHODS: A hospital-based descriptive cross-sectional study was conducted to know the iron profile and its socio-demographic association in patients with sickle cell disease. RESULTS: The average serum iron, TIBC, and transferrin saturation were 16.75 ± 6.40 mcgMole/L, 69.46 ± 16.94 mcg/dl and 25.15 ± 12.51% respectively. The serum ferritin ranged from 10.00 to 3000.00 ng/ml. The proportion of participants with normal serum iron, TIBC, serum ferritin, and transferrin saturation were 86.10%, 0.00%, 33.90% and 36.40% respectively. All of the participants of this study had low TIBC (1005), and more than half of the participants had elevated serum ferritin (56.40%). CONCLUSIONS: Iron overload is a common complication of sickle cell disease. There was no association of age and sex with iron profile. The TIBC variation between the Chaudhary ethnic group compared to other ethnic groups signifies the ethnic role in the iron profile.


Assuntos
Anemia Falciforme , Humanos , Estudos Transversais , Nepal , Etnicidade , Ferro , Transferrinas , Ferritinas
5.
Ann Hematol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581547

RESUMO

We evaluated the impact of the genotype on clinical and hematochemical features, hepatic and cardiac iron levels, and endocrine, hepatic, and cardiovascular complications in non-transfusion-dependent (NTD) ß-thalassemia intermedia (TI) patients. Sixty patients (39.09 ± 11.11 years, 29 females) consecutively enrolled in the Myocardial Iron Overload in Thalassemia project underwent Magnetic Resonance Imaging to quantify iron overload, biventricular function parameters, and atrial areas and to detect replacement myocardial fibrosis. Three groups of patients were identified: homozygous ß+ (N = 18), heterozygous ß0ß+ (N = 22), and homozygous ß0 (N = 20). The groups were homogeneous for sex, age, splenectomy, hematochemical parameters, chelation therapy, and iron levels. The homozygous ß° genotype was associated with significantly higher biventricular end-diastolic and end-systolic volume indexes and bi-atrial area indexes. No difference was detected in biventricular ejection fractions or myocardial fibrosis. Extramedullary hematopoiesis and leg ulcers were significantly more frequent in the homozygous ß° group compared to the homozygous ß+ group. No association was detected between genotype and liver cirrhosis, hypogonadism, hypothyroidism, osteoporosis, heart failure, arrhythmias, and pulmonary hypertension. Heart remodelling related to a high cardiac output state cardiomyopathy, extramedullary hematopoiesis, and leg ulcers were more pronounced in patients with the homozygous ß° genotype compared to the other genotypes analyzed. The knowledge of the genotype can assist in the clinical management of NTD ß-TI patients.

6.
Diagnostics (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611604

RESUMO

Cardiac involvement in sickle beta thalassemia (Sß-thal) patients has been poorly investigated. We aimed to evaluate cardiac function and myocardial iron overload by cardiovascular magnetic resonance (CMR) in patients with Sß-thal. One-hundred and eleven Sß-thal patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) network were studied and compared with 46 sickle cell anemia (SCA) patients and with 111 gender- and age- matched healthy volunteers. Cine images were acquired to quantify biventricular function. Myocardial iron overload (MIO) was assessed by the T2* technique, while macroscopic myocardial fibrosis was evaluated by the late gadolinium enhancement (LGE) technique. In Sß-thal and SCA patients, the morphological and functional CMR parameters were not significantly different, except for the left atrial area and left ventricular (LV) stroke volume, indexed by body surface area (p = 0.023 and p = 0.048, respectively), which were significantly higher in SCA patients. No significant differences between the two groups were found in terms of myocardial iron overload and macroscopic myocardial fibrosis. When compared to healthy subjects, Sß-thal patients showed significantly higher bi-atrial and biventricular parameters, except for LV ejection fraction, which was significantly lower. The CMR analysis confirmed that Sß-thal and SCA patients are phenotypically similar. Since Sß-thal patients showed markedly different morphological and functional indices from healthy subjects, it would be useful to identify Sß-thal/SCA-specific bi-atrial and biventricular reference values.

7.
Ann Med ; 56(1): 2338246, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38604224

RESUMO

BACKGROUND: Thalassemia is the most prevalent hereditary anaemia worldwide. Severe forms of thalassemia can lead to reduced life expectancy due to disease-related complications. OBJECTIVES: To investigate the survival of thalassemia patients across varying disease severity, causes of death and related clinical factors. PATIENTS AND METHODS: We conducted a retrospective review of thalassemia patients who received medical care at Chiang Mai University Hospital. The analysis focused on survival outcomes, and potential associations between clinical factors and patient survival. RESULTS: A total of 789 patients were included in our study cohort. Among them, 38.1% had Hb H disease, 35.4% had Hb E/beta-thalassemia and 26.5% had beta-thalassemia major. Half of the patients (50.1%) required regular transfusions. Sixty-five patients (8.2%) had deceased. The predominant causes of mortality were infection-related (36.9%) and cardiac complications (27.7%). Transfusion-dependent thalassemia (TDT) (adjusted HR 3.68, 95% CI 1.39-9.72, p = 0.008) and a mean serum ferritin level ≥3000 ng/mL (adjusted HR 4.18, 95% CI 2.20-7.92, p < 0.001) were independently associated with poorer survival. CONCLUSIONS: Our study highlights the primary contributors to mortality in patients with thalassemia as infection-related issues and cardiac complications. It also underscores the significant impact of TDT and elevated serum ferritin levels on the survival of thalassemia patients.


Assuntos
Cardiopatias , Sobrecarga de Ferro , Talassemia , Talassemia beta , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , Tailândia/epidemiologia , Causas de Morte , Talassemia/complicações , Fatores de Risco , Sobrecarga de Ferro/etiologia
8.
Free Radic Biol Med ; 219: 49-63, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608823

RESUMO

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.

9.
J Clin Transl Hepatol ; 12(4): 346-356, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38638373

RESUMO

Background and Aims: The clinical introduction of hepcidin25 (Hep25) has led to a more detailed understanding of its relationship with ferroportin (FP) and divalent metal transporter1 in primary iron overload syndromes (PIOSs). In 2012, we proposed a classification of PIOSs based on the Hep25/FP system, which consists of prehepatic aceruloplasminemia, hepatic hemochromatosis (HC), and posthepatic FP disease (FP-D). However, in consideration of accumulated evidence on PIOSs, we aimed to renew the classification. Methods: We reviewed the 2012 classification and retrospectively renewed it according to new information on PIOSs. Results: Iron-loading anemia was included in PIOSs as a prehepatic form because of the newly discovered erythroferrone-induced suppression of Hep25, and the state of traditional FP-D was remodeled as the BIOIRON proposal. The key molecules responsible for prehepatic PIOSs are low transferrin saturation in aceruloplasminemia and increased erythroferrone production by erythroblasts in iron-loading anemia. Hepatic PIOSs comprise four genotypes of HC, in each of which the synthesis of Hep25 is inappropriately reduced in the liver. Hepatic Hep25 synthesis is adequate in posthepatic PIOSs; however, two mutant FP molecules may resist Hep25 differently, resulting in SLC40A1-HC and FP-D, respectively. PIOS phenotypes are diagnosed using laboratory tests, including circulating Hep25, followed by suitable treatments. Direct sequencing of the candidate genes may be outsourced to gene centers when needed. Laboratory kits for the prevalent mutations, such as C282Y, may be the first choice for a genetic analysis of HC in Caucasians. Conclusions: The revised classification may be useful worldwide.

10.
AAPS J ; 26(3): 46, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609650

RESUMO

Patients with ß-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.


Assuntos
Acetato de Desoxicorticosterona , Hemocromatose , Humanos , Desferroxamina , Ácido Hialurônico , Ácidos e Sais Biliares
11.
Pediatr Blood Cancer ; : e30995, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616355

RESUMO

Hemochromatosis (HC) is characterized by the progressive accumulation of iron in the body, resulting in organ damage. Endocrine complications are particularly common, especially when the condition manifests in childhood or adolescence, when HC can adversely affect linear growth or pubertal development, with significant repercussions on quality of life even into adulthood. Therefore, a timely and accurate diagnosis of these disorders is mandatory, but sometimes complex for hematologists without endocrinological support. This is a narrative review focused on puberty and growth disorders during infancy and adolescence aiming to offer guidance for diagnosis, treatment, and proper follow-up. Additionally, it aims to highlight gaps in the existing literature and emphasizes the importance of collaboration among specialists, which is essential in the era of precision medicine.

12.
Curr Dev Nutr ; 8(4): 102147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38645881

RESUMO

Background: Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives: Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods: Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results: Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions: Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.

13.
J Clin Med ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592131

RESUMO

Hemolytic disease of the fetus and newborn (HDFN) may cause severe cholestasis with direct bilirubin concentrations reaching up to 50 times the upper limit of normal. This case report describes twins whose highest direct bilirubin concentrations were 32.2 mg/dL and 50.2 mg/dL, with no significant signs of hepatic impairment. The index pregnancy was complicated by Rhesus factor immunization with anti-D antibodies present in maternal serum, which caused fetal anemia requiring intrauterine blood transfusions. Complementary tests demonstrated Rhesus D alloimmunization as the sole cause of cholestasis. To the best of our knowledge, this is the first study to describe such elevated direct bilirubin concentrations caused by HDFN.

14.
Bone ; 184: 117092, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38575048

RESUMO

PURPOSE: Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J). METHODS: Mice received a high (20,000 ppm) or low-iron diet (∼10 ppm) after weaning for 6-8 weeks. For C57BL/6J males, we used two dietary setups with similar amounts of iron, yet different nutritional compositions that were either richer ("TUD study") or poorer ("UCLA study") in minerals and vitamins. After sacrifice, liver, blood and bone parameters as well as bone turnover markers in the serum were analyzed. RESULTS: Almost all mice on the UCLA study high iron diet had a significant decrease of cortical and trabecular bone mass accompanied by high bone resorption. Iron deficiency did not change bone microarchitecture or turnover in C57BL/6J, A/J, and DBA/2J mice, but increased trabecular bone mass in BALB/cJ, C3H/HeJ and AKR/J mice. In contrast to the UCLA study, male C57BL/6J mice in the TUD study did not display any changes in trabecular bone mass or turnover on high or low iron diet. However, cortical bone parameters were also decreased in TUD mice on the high iron diet. CONCLUSION: Thus, these data show that cortical bone is more susceptible to iron overload than trabecular bone and highlight the importance of a nutrient-rich diet to potentially mitigate the negative effects of iron overload on bone.

15.
Redox Biol ; 72: 103160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631120

RESUMO

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.

16.
Eur J Med Res ; 29(1): 253, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659000

RESUMO

The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.


Assuntos
Produtos Biológicos , Insuficiência Cardíaca , Ferro , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Ferro/metabolismo , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Animais , Ferroptose/efeitos dos fármacos , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Antioxidantes/uso terapêutico
17.
Int Cancer Conf J ; 13(2): 93-97, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38524657

RESUMO

A 7-year-old girl with a history of splenectomy for hereditary spherocytosis (HS) was diagnosed with renal hematoma after a blunt abdominal trauma while receiving aspirin. Multiple erythrocyte transfusions and transarterial embolization were performed without success. Eventual nephrectomy revealed severely necrotic and perforated Stage III Wilms tumor (WT). Radiochemotherapy was administered, but by the eighth week, she developed severe hepatic sinusoidal obstruction syndrome (HSOS). Her ferritin level at the time was 3406 ng/ml. Defibrotide and aggressive supportive measures provided full recovery. The patient was given deferasirox for iron chelation therapy and finished her treatment without incident. To our knowledge, just one patient with HS and WT has been described in the literature. The role of iron excess in HSOS pathogenesis in non-transplant patients has not been addressed before either. Transfusional hyperferritinemia, in addition to chemotherapeutics and radiation, may have contributed to the development of severe HSOS in our patient.

18.
Toxicol Pathol ; : 1926233241235623, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528719

RESUMO

Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.

19.
Biol Trace Elem Res ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502261

RESUMO

Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1ß at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.

20.
Ann Hematol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503936

RESUMO

Data on iron overload status and change thresholds that can predict mortality in patients with transfusion-dependent ß-thalassemia (TDT) are limited. This was a retrospective cohort study of 912 TDT patients followed for up to 10 years at treatment centers in Italy (median age 32 years, 51.6% female). The crude mortality rate was 2.9%. Following best-predictive threshold identification through receiver operating characteristic curve analyses, data from multivariate Cox-regression models showed that patients with Period Average Serum Ferritin (SF) > 2145 vs ≤ 2145 ng/mL were 7.1-fold (P < 0.001) or with Absolute Change SF > 1330 vs ≤ 1330 ng/mL increase were 21.5-fold (P < 0.001) more likely to die from any cause. Patients with Period Average Liver Iron Concentration (LIC) > 8 vs ≤ 8 mg/g were 20.2-fold (P < 0.001) or with Absolute Change LIC > 1.4 vs ≤ 1.4 mg/g increase were 27.6-fold (P < 0.001) more likely to die from any cause. Patients with Index (first) cardiac T2* (cT2*) < 27 vs ≥ 27 ms were 8.6-fold (P < 0.001) more likely to die from any cause. Similarly, results at varying thresholds were identified for death from cardiovascular disease. These findings should support decisions on iron chelation therapy by establishing treatment targets, including safe iron levels and clinically meaningful changes over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...